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Abstract 

The electron-density map of an Si crystal is drawn 
by the maximum-entropy method (MEM) with 30 
structure factors which were determined very 
accurately on an absolute scale by the Pendelli~sung 
method [Saka & Kato (1986). Acta Cryst. A42, 469- 
478]. It is shown that the following three beneficial 
points arise from the use of the MEM for accurate 
structure analysis. Firstly, a precise electron-density 
map can be obtained; the existence of bonding elec- 
trons is clearly visible in the maximum-entropy map, 
even though no forbidden reflections are included in 
the analysis. The structure factors calculated from the 
maximum-entropy map for the 222 and the 442 for- 
bidden reflections show good agreement with those 
measured by different experiments. The final R factor 
was 0.05% as a consequence of the high accuracy of 
the measured structure factors. Secondly, there is no 
need to seek a better structural model which could 
be a complicated and time-consuming process in 
accurate structure analysis. Thirdly, the resolution of 
the maximum-entropy map is much higher than that 
of the map drawn by conventional Fourier transfor- 
mation. It is also found in the case of silicon that 
phase information is not absolutely necessary because 
exactly the same density-distribution map can be 
obtained without any phase information as the map 
drawn with all the phase information. 

1. Introduction 

The maximum-entropy method (MEM) provides us 
with the least-biased deduction which is compatible 
with certain given information. There have been many 
theoretical studies (Narayan & Nityanada, 1982; 
Wilkins, Varghese & Lehmann, 1983; Livesey & Skill- 
ing, 1985; Navaza, 1985, 1986; Bricogne, 1988)to 
apply the method to problems in crystallography and, 
in particular, to Fourier inversion. There are many 
cases in crystallography which involve Fourier inver- 
sion. We here limit our study to the Fourier inversion 
from crystal structure-factor data to an estimate for 
the electron-density distribution of a crystal. 

In principle, an infinite number of Fourier 
coefficients are needed to perform a Fourier inversion 
without any ambiguity. It is, however, simply not 
possible to satisfy this condition experimentally. Con- 
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ventionally, Fourier inversion is performed by using 
a limited number of Fourier coefficients obtained by 
experiment and ignoring experimental errors. This 
procedure implicitly means that all the missing 
Fourier coefficients are set to zero. From the viewpoint 
of the maximum-entropy method, this is a highly 
biased assumption as to the missing information. 
There is no reason why all the missing structure 
factors have to be set to zero, simply because the 
experiment to measure them cannot be or was not 
carried out. 

Through the many theoretical studies on the MEM, 
its potential usefulness has now been recognized to 
treat various problems in crystallography, such as the 
phase problem (Piro, 1983; Podjarny, Moras, Navaza 
& Alzari, 1988). There are, however, only a few 
examples for which MEM has actually been applied 
(Wei, 1985; Gull, Livesey & Sivia, 1987), particularly 
in the field of accurate structure analysis. The present 
position is far from providing a proper understanding 
of the usefulness and the practical problems of apply- 
ing the MEM to accurate structure analysis. Under 
these circumstances, we investigated the capability of 
the MEM in the field of accurate structure analysis 
from the practical viewpoint, and in particular to 
investigate how precise a density-distribution map is 
obtained when the available structure-factor informa- 
tion is limited. 

Saka & Kato (1986) measured the X-ray structure 
factors of Si for 30 net planes by the Pendelli~sung 
method. In this method, the period of X-ray field 
oscillation which is proportional to the magnitude of 
the structure factor is measured, instead of the 
ordinary integrated intensity measurement of Bragg 
reflections. For this reason, the Pendellrsung method 
is claimed to have the highest accuracy for the 
measurement of X-ray structure factors. It enables 
one to measure X-ray structure factors on an absolute 
scale. For the same reason, however, it is very difficult 
to measure the so-called forbidden reflection such as 
222 or 442 by this method. In fact, Saka & Kato (1986) 
did not measure any forbidden reflections. 

The forbidden reflections of Si arise from the 
asphericity of the electron-density distribution owing 
to the bonding electrons and/or anharmonic thermal 
vibrations. At room temperature, most of the contri- 
bution comes from the bonding electrons (Keating, 
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Nunes, Batterman & Hastings, 1971). The existence 
of the bonding-electron distribution affects not only 
the forbidden reflections but also all the Bragg reflec- 
tions, although the contribution could be very small. 
Therefore, the information on the bonding-electron 
density must be included in all the structure factors 
of Si to some extent if they are determined to high 
accuracy. However, it is not known how to extract 
this information. Without the information on the for- 
bidden reflections, the bonding-electron density can- 
not be visualized by conventional Fourier syntheses. 
Indeed, in order to calculate the bonding charge, Saka 
& Kato (1986) borrowed the values of the 222 and 
442 reflections from other sources (Fehlman & 
• Fujimoto, 1975; Trucano & Batterman, 1972), the 
accuracy of which is not as high as that of Saka and 
Kato's measurement. 

The best deduction should enable us to extract all 
the information which is contained in the observed 
data. It is a challenge to tackle this problem. Some 
results concerning this problem obtained via the 
MEM are shown in this paper. 

2. Theory 

There are a few variations of the formalism of the 
MEM as applied to the Fourier inversion problem, 
e.g. Gull & Daniel (1978), Collins (1982), Wilkins, 
Varghese & Lehmann (1983). Since in essence these 
are the same, there should be no significant difference 
in the final result for these formalisms. In this study, 
we follow basically Collins's formalism. There is no 
particular reason for this selection except that it has 
an explicit formulation for the actual electron density 
rather than the normalized density. 

Collins's formalism is based on the entropy 
expression, S, obtained by Jaynes (1968): 

S = - ~  p'(r) In [p'(r)/z '(r)] .  (1) 
r 

The probability p'(r) and prior probability ~"(r) are 
connected with the actual electron density by 

p'(r) = p ( r ) /~  p(r) (2) 
!" 

r'(r) = r(r)/Y~ ~'(r) (3) 
r 

where p(r) is the electron density at a certain pixel r 
and r(r) is the prior density for p(r). 

We introduce two types of weak constraints as given 
information; one is for phase-known structure factors 
and the other is for phase-unknown structure factors. 

C,=(1/N1) ElF~al(k)-Fobs(k)12/o'2(k) (4) 
k 

C2=(1/N=) Y~ IIFcaKk)l-IFobs(k)ll2/G2(k) (5) 
k 

where N~ and N2 are the number of reflections for 

phase-known and phase-unknown structure factors, 
respectively, Fobs(k) is the observed structure factor 
for reflection k, or(k) the standard deviation of 
Fob..(k), and Foal(k) is the calculated structure factor 
given as 

Foal(k) = VY~p(r) exp(-2frir.k), (6) 
ir 

where V is the unit-cell volume. The expected value 
for C1 and C2 is 1. The sums in (4) and (5) are taken 
over the set of points for which the phase-known and 
phase-unknown structure-factor data are measured. 
We use Lagrange's method of undetermined multi- 
pliers to constrain C~ to be unity while we maximize 
the entropy. Then we have 

Q()t~, A2)= - ~  p(r) In [p(r)/~'(r)] 
r 

-(A,/2)C,-(A2/2)C2, (7) 

where )t~ and Az are Lagrange multipliers. By setting 

aO(A,, Az)/0o(r) = 0 (8) 

and using some approximations given by Collins 
(1982), we have 

p(r) = exp [ln r(r)+(al/N~)Z [1/o-2(k)] 

X {Fobs(k ) - F~a,(k)} exp (-27rik.  r) 

+(A# Nz) Z [ l / o 2 ( k ) ]  

x { Fobs(k) exp [i@(k)]- F~a,(k)} 

x exp (-27rik.  r)], (9) 

where 

A, = A,Fo, A2=A2F2 (10) 

and Fo is equal to the number of electrons in a unit 
cell, Z In the present study, we strictly confine the 
total number of electrons in the unit cell to be Z 
Since all the structure factors are known on an 
absolute scale, this can be done in a straightforward 
way. When Fobs(k), o-(k) and Ai are given, we can 
obtain (9) which determines the MEM estimate for 
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Fig. 1. Unit cell and asymmetric unit of  space group Fd3m.  
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the electron-density distribution, PMEM(r). In prac- 
tice, the value of PMEM(r) has been solved numerically 
by an iterative procedure, starting from the uniform 
electron density. 

In the present work, we use our knowledge of the 
space group. For this purpose, we calculate the elec- 
tron density in the region of the minimum asymmetric 
unit. In the case of Si, of which the space group is 
Fd3rn, the asymmetric unit is written as 0 <-x-<½; 
0_<y_<~;-~___z_<~; y<-min(½-x,x);-y<_z<_y 
(International Tables for Crystallography, 1983). This 
asymmetric unit is shown in Fig. 1. After calculating 
the electron-density distribution of the minimum 
asymmetric unit by using (9), we can produce the 
electron-density distribution for the whole unit cell 
through the symmetry operations. 

3. MEM density map 

The computation time to obtain a three-dimensional 
MEM density-distribution map is sometimes enor- 
mous. As part of the effort to reduce the computation 
time, a fast Fourier transformation (FFT) was used 
to compute (6) in each iteration. For the FFT it is 
necessary to divide the unit  cell into 2" pixels. Here 
we computed 32 × 32 x 32 or 64 x 64 x 64 pixels by 
using n =5 or 6. 

The total number of electrons was always fixed at 
112 which is equal to the number of electrons of 8 Si 
atoms in the unit cell. The initial electron density was 
set at ~'(r) = (p) = 0.699233 (e]k -a) for all pixels. This 
uniform electron-density distribution corresponds to 
the maximum-entropy state when no information on 
the structure factors is given. It is clear that no preju- 
dice is included in the choice of the initial prior 
electron density. After the first iteration, ~-(r) was 
replaced by the electron density obtained by that 
iteration. 

3.1. The phase-known analysis 

As a first step, we examined the MEM density map 
in the case where the phases of all the structure factors 
are known. These phases are easily obtained from the 
structure-factor calculation of diamond structure. 

In this case, the iteration was continued until the 
condition C1-< 1 was attained. When this condition 
is attained, p(r) is always very close to ~'(r). This fact 
justifies the approximation which was used to derive 
(9). To clarify the procedure, the flow chart of the 
calculation is shown in Fig. 2. When the wrong A1 
value is chosen, it always diverges as the iteration 
goes on. Whenever convergence is obtained, the same 
density-distribution map was obtained. In other 
words, the MEM density distribution does not depend 
on the choice of X l. This situation is exactly the same 
as for radio and X-ray astronomy fields (Gull & 
Daniel, 1978). It is also noticed that the larger A~, 

the quicker the convergence. In order to save compu- 
tation time, we tried to find the largest A1 value which 
can lead to convergence. 

It is convenient to show the various density distri- 
butions in the (110) plane, since the covalent bond 
is expected in this plane. The precise region for plot- 
ting the electron-density distribution in this plane and 
the atomic positions are shown in Fig. 3. 

In Fig. 4, the MEM density map obtained on the 
basis of Saka & Kato's data is shown (a) for the 
higher-density region and (b) for the lower-density 
region in the case of 64× 64x 64 pixels. Firstly, it 
should be mentioned that the atomic positions are 
correct as seen in Fig. 4(a). Secondly, the electron 
flow of the covalent bond appears beautifully in Fig. 
4(b) and the maximum of the bonding electrons exists 
between the two Si atoms. 

For comparison, the electron-density map drawn 
by the conventional Fourier method using the same 
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Fig. 2. Flow chart for the present calculation with the maximum- 
entropy method. 
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data set is shown in Fig. 5 with 32 x 32 x 32 pixels. 
Although the atomic position is correct, there is no 
indication of bonding electrons in the figure. Further- 
more, there is a negative-density region as a result of 
the termination of the Fourier sum. It has been 
pointed out that the MEM density distributions never 
have physically meaningless negative density (Gull 

S; [11~8] plane 

i i 

Fig. 3. Schematic diagram of the Si (110) plane. In Figs. 4, 5 and 
7, the electron-density distribution of the area surrounded by 
the solid line is shown. 

& Daniel, 1978; Wilkins, Varghese & Lehmann, 1983). 
Another big difference between the two maps is the 
peak height of the density at the atomic position. The 
peak height in the MEM density map is 208 e A-3 
and that of the conventional direct Fourier map is 
96 e A -3, i.e. the peak height in the MEM density 
map is more than twice that of the conventional 
Fourier map. This is clear evidence that the MEM is 
superior to the conventional direct Fourier method, 
concerning the resolution of the density-distribution 
map obtained. It will be discussed in § 4 in more 
detail. 

The observed, Fobs(k), and the calculated, Fca l (k ) ,  

structure factors from MEM density distribution are 
listed in Table 1. As a result of the high accuracy of 
the measurement, the agreement is excellent. Since 
the iteration was continued until the condition C1 -< 1 
was achieved, the overall agreement is determined by 
the e.s.d.'s of the structure factors. It is, therefore, 

(a) 

/ 

(b) 

Fig. 4. The contour map of the electron-density distribution on 
the Si (110) plane deduced by the maximum-entropy method 
from Saka & Kato's data (a) for higher-density region and (b) 
for lower-density region. The contour lines (e/~-3) are drawn 
from 1.50 to 201-50 with 20.0 intervals in (a) and from 0.1 to 
1"5 with 0-1 intervals in (b). In the calculation, the unit cell is 
divided into 64 x 64 x 64 pixels. 
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Fig. 5. The contour  map of the electron-density distribution on 
the Si (110) plane calculated by the conventional direct Fourier 
method using Saka & Kato's data (a) for the higher-density 
region and (b) for the lower-density region. The contour lines 
(e/~-3) are drawn from 1-6 to 91.6 with 10.0 intervals in (a) 
and from -2 .40  to 1.6 with 0.8 intervals in (b). The negative- 
density region in (b) is drawn with dotted line. 
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Table 1. The observed structure factors of Si by Saka 
& Kato (1986) and calculated structure factors from 
the density distribution obtained by the maximum- 

entropy method 

The phase is added for Saka & Kato's data, since there is no 
ambiguity of the determined phase. 

h k l Fob s Fcal 
0 0 0 - -  112-0000 
1 1 1 -60"1312 -59-9391 
2 2 0 -67.3432 -67.5070 
I 1 3 -43-6336 -43"6146 
4 0 0 -56"2344 -56"2169 
3 3 1 38"2239 38"2215 
4 2 2 49"1056 49"0980 
3 3 3 32"8329 32"8345 
5 1 1 32"9410 32"9463 
4 4 0 42"8848 42"8816 
5 3 1 28"8143 28"8156 
6 2 0 37"5872 37"5681 
5 3 3 -25"3568 -25"3580 
4 4 4 -33"1760 -33-1807 
5 5 1 -22-4221 -22"4215 
7 1 1 22"3712 22-3727 
6 4 2 -29"4208 -29-4217 
5 5 3 -19"9755 -19"9739 
7 3 1 -19"8986 -19"8990 
8 0 0 26"2272 26"2284 
7 3 3 -17"8298 -17"8296 
6 6 0 -23"4832 -23"4852 
8 2 2 -23"4840 -23"4841 
5 5 5 15"9784 15"9776 
7 5 1 -15.9795 -15-9789 
8 4 0 -21"1496 -21.1503 
7 5 3 14"4295 14.4292 
9 1 1 -14"4584 -14-4582 
6 6 4 19"1256ff 19"1261 
8 4 4 17"4384 17.4386 
8 8 0 12"4112 12"4112 

not necessary to express the overall agreement in the 
form of an R factor, which is defined as 

R = Y, Fobs(k) - Fca,(k) 2/ Fobs(k)  2 (11) 
k 

and is commonly used in least-squares refinement. In 
this work, we use the R factor for convenience to 
allow easy comparison of MEM analysis with least- 
squares refinement. The value of the R factor is 0.0005 
for the final MEM density map. It would be very 
difficult in a least-squares refinement to think of a 
structural model which would give such an excellent 
agreement. If we could not reach an R factor as low 
as this level in a least-squares refinement, the high 
accuracy of the measurement would be wasted. It 
should also be noticed that the peak height of the 
bonding electron is still much higher for the MEM 
density map, i.e. 0.7 e A -3, than that for the difference 
Fourier map calculated by Saka & Kato (1986) using 
222 and 442 forbidden-reflection data from other 
sources (Fehlman & Fujimoto, 1975; Trucano & Bat- 
terman, 1972), i.e. 0.221 e ~-3,  which implies that the 
visibility of the small deformation of the electron- 
density distribution, like the bonding electrons, is 
much superior with the MEM than with the conven- 
tional Fourier method. 

As far as the R factor is concerned, the density- 
distribution map of the conventional method yields 
a smaller value. Indeed, the calculated structure fac- 
tors obtained from the density map of the conven- 
tional method are exactly the same as the observed 
ones, since the structure factors are calculated by the 
inverse Fourier transformation of the conventional 
density-distribution map which was initially obtained 
by the Fourier transformation of the observed struc- 
ture factors. Therefore, the R factor is zero. However, 
the calculated structure factors for unmeasured Bragg 
reflections are all zero. This is very unlikely to be true 
in reality and shows the bias present in the conven- 
tional method of Fourier synthesis. 

3.2. The phase-unknown analysis 

As a second step, we attempted to calculate the 
MEM density map without using any phase informa- 
tion. The simple way to do this is to replace (4) by 
(5) as a constraint function. In this case, however, no 
convergence is reached no matter how h2 was chosen. 
In order to help the understanding of the situation, 
the value of the constraint function, (22, is shown in 
Fig. 6 as a function of the number of iterations when 
(5) is used instead of (4). In the figure, the value of 
C1 is also shown for the case of the phase-known 
analysis. It is understood that there is no sign of the 
convergence in the case of phase-unknown analysis. 
Therefore, we stopped the calculation which uses only 
(5) as a constraint. 

In the present case, the phase of the structure 
factors are either 0 or 180 °, because of the existence 
of the center of symmetry. Therefore, F(hkl) is either 
F(hkl) = +IF(hkl)  I or -IF(hkl) I. Hence there are only 
two possibilities for the sign of a structure factor by 
MEM deduction if we select a particular reflection 
as a reference for a phase-known structure factor. We 
can calculate the contribution to the electron-density- 
distribution map for both cases. Incidentally, we 
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Fig. 6. The values of the constraint functions C1 and C2 against 
the number of iterations in the case of phase-known and phase- 
unknown analyses, respectively. In the case of the phase- 
unknown analysis, there is no sign of convergence. Hence the 
iteration was stopped at the point x. 
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selected F ( l l  1) as the reference reflection. In this 
case, F ( l l l )  is either +60.1312 or -60.1312.  Using 
either of  them, we obtained the density distr ibution 
shown in Fig. 7 as the two possibilities by phase- 
known analysis.  They are identical except for the 
origin of the unit  cell. There is no absolute criterion 
for the choice of the origin. Indeed, they actually 
represent the same structure. This happens  in general 
in the case of  structure determinat ion with a center 
of  symmetry.  

After th is  procedure,  we added the second con- 
straint, (5), for the rest of  the structure factors. We 
used the same value for hi and h2. As a result, we 
obtained exactly the same M E M  density distr ibution 
as that obtained by the phase-known analysis men- 
t ioned in § 3.1. Therefore,  it can be said that the M E M  
density distr ibution of  Si can be obtained without 
any phase information.  The electron-density-distribu- 
tion map  shown in Fig. 4 is an ab initio solution by 
the M E M  which was deduced from Saka & Kato's  

data. The map can be obtained without a structural 
model or any informat ion on the phases of the struc- 
ture factors. 

4. High resolution of  the M E M  

In the field of  the M E M  analysis,  the term super- 
resolution is sometimes used (Wilkins, Varghese & 
Lehmann,  1983) and refers to structural informat ion 
inside the Shannon-Nyqu i s t  interval (Shannon,  
1949). In the conventional  method,  the resolution is 
mainly  restricted by terminat ion errors in the Fourier  
sum, while the MEM tends to minimize terminat ion 
errors. 

The present analysis offers a very good demonstra-  
tion of the high resolution achievable with the MEM. 
As pointed out in § 3.1, the peak height of  the electron 
density at the atomic position is much higher  in the 
MEM density map. This is because of the result of  
the high resolution of the MEM. This fact can be 
understood from the s imple discussion presented 
below. 

We calculated the electron density at the peak 
position using different numbers  of  structure-factor 
data. In the M E M  analysis,  we changed the number  
of data into 9 steps, which were 2, 5, 8, 11, 13, 18, 
20, 25 and 28. For conventional  Fourier  synthesis, we 
used the calculated structure factors in order to extend 
the number  of data .to as many  as we wished. In the 
structure-factor calculation,  the temperature factor is 
fixed at the value quoted by Saka & Kato (1986). This 
value may not be valid for very high-order reflections, 
for which anharmonic  thermal  vibrations should be 
considered,  but this effect does not affect the essence 
of the present discussion. In Fig. 8, the electron 

(a) 

(b) 

Fig. 7. The contour map of the electron-density distribution on 
the Si (110) plane using only one structure factor, F(111). The 
phase of F( l l l )  is assumed (a) F( l l l )=+IF( l l l ) ]  and (b) 
F( l l l )  = -[F(lll)[. The contour lines are from 2.0 to 18-0 with 
2.0 e A-3 intervals. 
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Fig. 8. The peak height of the electron-density distribution of Si 
is plotted against the number of structure-factor data used in 
the analysis. For the maximum-entropy method, Saka & Kato's 
data are used.' For the conventional direct-Fourier method, the 
calculated structure factors are used in order to extend the 
number of data. In the structure-factor calculation, the tem- 
perature factor is fixed at the value quoted by Saka & Kato 
(1986). The vertical arrows labelled Cu, Mo and Ag represent 
the limit of the number of the data collected when Cu Ka, Mo 
Ka and Ag Ka radiations are used. 
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density at the peak position is plotted as a function 
of the maximum value of h2+ k2+ 12 of the data used. 

In conventional Fourier analysis, the peak height 
increases gradually as the number of data increases 
and reaches a nearly constant value, while, in the 
MEM, the increment is much steeper. In order to 
obtain a good estimate of the true electron density at 
a peak position, we have to know the higher-order 
anharmonicity which affects the very high-order 
reflections like 20,20,20 etc. It can, however, safely 
be said that the true electron density at the peak 
position is higher than that of the MEM density map. 
The conventional direct Fourier map shown in Fig. 
5 has a much lower peak height than that of the MEM 
map because a limited number of structure factors is 
used in the Fourier synthesis. It can, therefore, be 
said that the electron density at a peak position 
obtained by the MEM analysis is much closer to the 
truth. 

It should be mentioned here again that the very 
high electron density at the peak position in the MEM 
density map is not the result of any artificial pro- 
cedures, since the MEM, in principle, tries to make 
the peak as low as possible so long as the constraint 
is satisfied. 

5. Forbidden reflections 

The MEM density map shown in Fig. 4 looks very 
satisfactory as seen in previous sections, although it 
is obtained without using any forbidden reflections. 
Since the MEM density-distribution map enables us 
to predict the values of unmeasured structure factors, 
we can compare the calculated structure factors from 
the MEM density map with some other experimental 
values for any reflections. It would be most interesting 
to do such a comparison for forbidden reflections. 
Fortunately, there have been quite a few experiments 
to determine the structure factors for forbidden reflec- 
tions on an absolute scale. 

For this purpose, the calculated structure factors 
from the present MEM density-distribution map are 
listed in Table 2 up to h2+ k2+ 12= 300, not only for 
forbidden reflections but also for all other 
unmeasured reflections by Saka & Kato (1986). 
Although it is possible to calculate the structure fac- 
tors for further reflections, the 6 4 x 6 4 x 6 4  pixels 
should not be precise enough for such higher-order 
reflections. 

The structure factor F(222) for silicon at room 
temperature has been measured by many authors by 
various experimental methods. They are conveniently 
summarized by Alkire, Yelon & Schneider (1982). 
We added our calculated values to them. They are 
shown in Table 3. At first glance, the prediction looks 
very reasonable. Although the predicted value is 
slightly higher than that of the recent experimental 
value by Alkire, Yelon & Schneider (1982), who 

Table 2. The calculated structure factors from the 
M E M  density-distribution map for unmeasured reflec- 

tions by Saka & Kato (1986) 

h k i Fhkt h k ! Fhkt 
2 2 2 1"5270 8 6 6 --10-8775 
4 4 2 --0"0349 9 7 3 --7-4670 
6 2 2 --0"0112 10 6 2 0.0493 
6 4 4 --0.0126 8 8 4 --10-0092 
6 6 2 0"0121 7 7 7 --6-8645 
8 4 2 --0"0130 10 6 4 --9"2547 
9 3 1 --13"0103 9 7 5 --6"3342 
7 7 1 11"9035 9 9 1 -5"9879 
9 3 3 11.8179 8 8 6 -0"0664 
7 5 5 11"8539 10 8 2 -7"9477 

10 2 0 -15-7866 9 9 3 -5"4320 
8 6 2 15"7732 10 6 6 -0"0484 
9 5 1 10"7391 9 7 7 4"8625 
7 7 3 10"7586 10 8 4 -0"0436 

10 2 2 0.0220 9 9 5 4.5386 
6 6 6 0"0732 8 8 8 6"0861 
9 5 3 9"8459 10 10 0 -5"9286 
8 6 4 0-0510 10 8 6 5"7022 

l0 4 2 13"1099 10 10 2 -0"0021 
7 7 5 -8"8417 9 9 7 3-6463 
9 7 1 8"3286 10 10 4 5"0182 
9 5 5 -8"1466 10 8 8 0-0485 
8 8 2 0"0354 10 10 6 0"0411 

10 4 4 0"0387 9 9 9 -2"6627 
10 6 0 11.0482 10 10 8 -3"2102 

10 10 10 0-0299 

Table 3. Values of  the structure factor F(222) for 
silicon at room temperature 

R e f e r e n c e  F ( 2 2 2 )  

Hewat, Prager, Stephenson & Wagenfeld (1969) 0.88 
Aldred & Hart (1973) 1.35 + 0.04 
DeMarco & Weiss (1965) 1.44 + 0.08 
Alkire, Yelon & Schneider (1982) 1-456 ± 0.008 
Roberto & Batterman (1970) 1-46 + 0.04 
J,ennings (1969) 1.48 + 0.03 
Fujimoto (1974) 1.50+0-015 
Present work (calculated value) 1.527 
Coleila & Merlini (1966) 1.54 
Renninger (1960) 1.55 
Fehlman & Fujimoto (t975) 1.65 +0.03 
G6ttlicher, Kuphal ,  Nagorsen & WiSIfel (1959) 1.78 

Table 4. Values of  the structure factors F(442) and 
F(622) for silicon at room temperature 

R e f e r e n c e  F ( 4 4 2 )  F ( 6 2 2 )  

Trucano & Batterman (1972) -0.035 + 0.002 
Mills & Batterman (1980) -0 .042±0.003  +0.005+0.004 
Tisdaler & Batterman (1984) -0-0370+0-0023 +0.0088+0-0011 
Present work (calculated values) -0.0349 -0-0112 

claimed the highest accuracy, it is well within the 
range of the various experimental values. It is also 
noticed that the present value lies between two of the 
PendelliJsung-fringe measurements which is the same 
experimental method as Saka & Kato's. 

For the 442 and 622 forbidden reflections, many 
fewer measurements have so far been done than for 
the 222 reflection. They are tabulated in a recent work 
of Tischler & Batterman (1984). These experimental 
values are shown with the present values in Table 4. 
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For the 442 reflection, the agreement between the 
present value and the three experimental values is 
extremely good. It is surprising to see that the simple 
MEM deduction is able to predict correctly such a 
small value for the structure factor. 

For the 622 reflection, there is excellent agreement 
between the present value and two other experimental 
values for the magnitude of the structure factor. 
However, the calculated phase of the structure factor 
is opposite to the experimentally determined phase 
by Tischler & Batterman (1984). This disagreement 
is probably due to the limit of the present MEM 
deduction. If one remembers that the magnitude of 
F(622) is less than 1% of that of the 222 forbidden 
reflection, such a limitation would be bearable. An 
improvement of the agreement between these two 
values may be made if we could increase the pixel 
number to 128 × 128 × 128 in the MEM analysis, since 
the very small value of a structure factor like that for 
the 622 reflection may be affected significantly by the 
number of  pixels used. 

Tischler & Batterman (1984) have also determined 
the values of F(442) and F(622) for germanium 
including their phases. They found that the phase of 
the germanium 442 structure factor is opposite to that 
of silicon, while the phase of the 622 structure factor 
is the same for germanium and silicon. In this context, 
it would be very interesting to draw a very precise 
electron-density distribution of germanium and to 
find out where such a difference originates. 

6. Concluding remarks 

The accurately determined structure factors for Si 
obtained by the Pendell iSsung method include valu- 
able information about the detail of the electron- 
density distribution such as the bonding electron 
density even if the forbidden reflections are excluded, 
whereas the conventional method of Fourier analysis 
fails to extract such information properly. On the 
other hand, the MEM enables us optionally to treat 
the information in the structure-factor data. 

The M E M  will be very useful in accurate structure 
analysis, because it is a model-free analysis, it can 
yield very high resolution on a density map provided 
the data are sufficiently accurate and it may work 
without phase information. 

We thank Professor J. Harada for his critical read- 
ing of the manuscript. All the computations in this 
work were done at the Computer  Center of Nagoya 
University which is gratefully acknowledged by the 
authors. 
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